

Part (4)

Table of Content

Risk Definitions	
The 'very basic toolbox'	6
The 'intermediate toolbox'	
Step 1 - Risk Management Planning	7
Step 2 - Risk Identification	
Step 3 - Risk Evaluation	9
Step 4 - Risk Treatment	12
Step 5 - Risk Monitoring	14
The 'advanced toolbox'	
Step 6 - Risk Quantification	17
Step 6' - Risk Analyses	20

Project Risk Management

"Project triangle"

Risk Definitions

Risk

Etymology

- From ancient Latin: risicare = reef risk-snag
- From (ancient) Greek: ρίζα = root → risk-snag

Fabio Sabelli (mars 1999) Les risques de l'économie, l'économie des risques. Le point de vue de l'anthropologue. présentation donnée lors du 7° Congrès de la Société suisse de management de projet à Lausanne, Suisse

- From (ancient) Latin: *rixa* = quarrel, brawl → *risk-action*
- From ancient Greek: ριζικόν = soldier's pay → risk-action

Risiko, Risiken in German

Risk Heatmap

Likelihood × Consequences

Strategic risks
Operational risks
Financial risks
Reputational risks
Safety risks
Environmental risks

ERM

Technical risks related to the system/product being developed, incl. technical reqts. Programmatic risks related to the project: on schedule, on budget External risks for which the project team has no real control

Project Risk Management

Standards and methodologies

PXX PMBOK	Ch. 11 pp. 309–354 + Practice Standard
O PRINCE2	Ch. 8 (4 th theme) pp. 75–88
HERMES 5.1	<i>Rôle</i> pp. 54–57 + <i>Tâche</i> pp. 104–105
3 21500:2012	§§ 2.13, 4.2.3.8, 4.3.28, —.29, —.30, —.31
Systems Engineering Handbook NASA/SP-2007-6105 Rev1	§ 6.4 pp. 139–150
INCOSE SEBoK	sebocwiki.org/wiki/Risk_Management
EUROPEAN COORDINATION FOR SPACE STANDARDISATION	ECSS-M-ST-80C July 2008
<pre> opense </pre>	§ IV.3.5 p. 50

Project Risk Management with OPPOSE 3 levels of implementation

> 3. Advanced approach 2. **Intermediate** approach 1. Simple approach

The preferred project risk management approach shall be defined in the Project Management Plan

The 'very basic toolbox'

Project Risk Management SIMPLE The 'basic toolbox' Bullet list consisting of risk statements: Simplified ⟨risk⟩, however ⟨response⟩ Risk Register examples_ • Unsufficient funding, however initial investigations have shown that stakeholders are likely to fund this proposed project • Unrealistic master schedule, *however* discussions in conferences and workshops have shown that one year to have an experimental setup in operation is realistic • Technical problems with instrumentation, however according to a few interviewed experts, the solutions considered are totally feasible • Enhanced experimental setups by other labs, *however* our scientific watch shows that this set-up will be very competitive

The 'intermediate toolbox'

Step 1 - Risk Management Planning

Step 2 - Risk Identification

©©®® Pierre Bonnal

Step 3 - Risk Evaluation

Risk Level Matrix

Probability	P
Very unlikely	.1
Rather unlikely	.3
Possible, plausible	.5
Rather likely	.7
Very likely, quite certain	.9

Consequences	c
Negligible	.05
Marginal	.1
Significant	.2
Major, critical	.4
Catastrophic, crisis	.8

Risk Level Matrix

Consequences	С	on budget on schedu	
Negligible	.05	$\Delta C \approx 0$ $\Delta D \approx 0$	
Marginal	.1	1% < ∆C ≤ 5%	1% < ∆D ≤ 5%
Significant	.2	5% < ΔC ≤ 10% 5% < ΔD ≤ 3	
Major, critical	.4	10% < ΔC ≤ 20%	10% < ΔD ≤ 20%
Catastrophic, crisis	.8	ΔC > 20%	ΔD > 20%

Risk Level Matrix

Consequences	С	on the project performance
Negligible	.05	Minimal or no consequence
Marginal	.1	Small reduction of the performance
Significant	.2	Significant degradation of the performance
Major, critical	.4	Technical goals cannot be achieved
Catastrophic, crisis	.8	Project cannot be completed

Risk Level Matrix

$$S = P \times C$$

S < 0.05

low risk

 $0.05 \le \mathbf{S} < 0.20$

medium risk

 $S \ge 0.20$

high risk

Risk Level Matrix

PC	.05	.1	.2	.4	.8
.9	.05	.09	.18	.36	.72
.7	.04	.07	.14	.28	.56
.5	.03	.05	.10	.20	.40
.3	.02	.03	.06	.12	.24
.1	.01	.01	.02	.04	.08

Step 4 - Risk Treatment

Generic Response Types

Type of response	Method of handling
Modify objectives	Reduce or raise performance targets; change tradeoffs between objectives
Avoid	Plan to avoid specified sources of risk/uncertainty
Influence probability	Change the probability of potential variations, i.e. prevent
Modify consequences	Modify the possible consequences of variations, i.e. protect
Transfer consequences	Transfer consequences to another party, e.g. contract provision, insurance
Develop continuity plans	Set aside means or make other plans to provide a reactive ability to cope
Keep options open	Delay choices and commitments, choosing versatile options
Monitor	Collect and update data about sources of uncertainty
Accept	Acknowledge and accept uncertainty
Remain unaware	Ignore uncertainty, take no action to identify, evaluate or handle it
Optimize all the above	Explicitly recognise the value of selecting an optimal combination

Stephen Ward, Chris Chapman (2011) How to Manage Project Opportunity and Risk: Why Uncertainty Management can be a Much Better Approach than Risk Management (3 ed). Wiley

Step 5 - Risk Monitoring

The 'advanced toolbox'

and conducting additional risk analysis 🗸

Step 6 - Risk Quantification

Risk quantification

Four approaches for dealing with probabilities:

- Classical approach
- → Mathematical approach
- → Frequentist approach
- Bayesian approach

Risk quantification

Four approaches for dealing with probabilities:

→ Classical approach:

The probability P(A) of an event A is the property that determines its frequency of occurrence.

E.g.:

$$P(head) = P(tail) = 1/2$$

$$P(\bigcirc) = P(\bigcirc) = 1/6$$

Risk quantification

Four approaches for dealing with probabilities:

→ Mathematical approach:

P(A) is a number that obeys the many axioms of the theory built up by A. Kolmogorov in the '30s:

$$\begin{aligned} 0 &\leq \mathsf{P}(A) \leq 1 \\ \mathsf{P}(A \lor B) &= \mathsf{P}(A) + \mathsf{P}(B) \\ \sum \mathsf{P}(A_i) &= 1 \\ \dots \end{aligned}$$

Risk quantification

Four approaches for dealing with probabilities:

→ Frequentist approach:

P(A) is a limit over a set, when the number of elements of this set tends to ∞

Risk quantification

Four approaches for dealing with probabilities:

→ Bayesian approach:

P(A) is the degree of belief in the occurrence of an event

Step 6' - Risk Analyses

